Page 98 - 6099
P. 98

The equilibrium temperature distribution is
                                                                 Z  h
                                              x − h      x    1
                                     µ(x) = α        + β   −         x < (x > − h)s(ξ) dξ,
                                                h        h   κh   0
                                                              Z  x            Z  h
                                             x    1
                         µ(x) = α + (β − α) −          (x − h)    ξs(ξ) dξ + x     (ξ − h)s(ξ) dξ .
                                             h    κh            0               x
                       Now we substitute u(x, t) = v(x, t) + µ(x) into Equation 9.8.

                                           ∂                 ∂ 2
                                             (v + µ(x)) = κ     (v + µ(x)) + s(x)
                                           ∂t               ∂x 2
                                                                00
                                                 v t = κv xx + κµ (x) + s(x)
                                                         v t = κv xx                                 (9.9)
                   Since the equilibrium solution satisfies the inhomogeneous boundary conditions, v(x, t)
                   satisfies homogeneous boundary conditions.

                                                    v(0, t) = v(h, t) = 0.

                   The initial value of v is
                                                   v(x, 0) = f(x) − µ(x).
                       We seek a solution for v(x, t) that is a linear combination of eigen-solutions of the heat
                   equation. We substitute the separation of variables, v(x, t) = X(x)T(t) into Equation 9.9

                                                      T  0   X 00
                                                          =      = −λ
                                                      κT     X

                   This gives us two ordinary differential equations.
                                              00
                                           X + λX = 0,         X(0) = X(h) = 0
                                                          0
                                                        T = −κλT.

                       The Sturm-Liouville problem for X(x) has the eigenvalues and orthonormal eigenfunc-
                   tions,
                                                            r
                                             nπ                2      nπx
                                                2
                                                                                     +
                                     λ n =        ,   X n =      sin        ,  n ∈ Z .
                                             h                 h       h
                   We solve for T(t).
                                                                     2
                                                     T n = c e −κ(nπ/h) t  .
                   The eigen-solutions of the partial differential equation are
                                                      r
                                                         2     nπx          2
                                            v n (x, t) =   sin        e −κ(nπ/h) t  .
                                                         h       h

                   The solution for v(x, t) is a linear combination of these.
                                                    ∞    r
                                                   X        2     nπx          2
                                         v(x, t) =     a n    sin        e −κ(nπ/h) t
                                                            h       h
                                                   n=1


                                                             91
   93   94   95   96   97   98   99   100   101   102   103