Page 99 - 6099
P. 99

We determine the coefficients in the series with the initial condition.
                                                  ∞    r
                                                 X        2     nπx
                                       v(x, 0) =     a n    sin        = f(x) − µ(x)
                                                          h       h
                                                 n=1
                                               r
                                                   Z  h
                                                 2          nπx
                                         a n =         sin        (f(x) − µ(x)) dx
                                                 h   0        h
                   The temperature of the rod is

                                                        ∞    r
                                                       X        2     nπx          2
                                      u(x, t) = µ(x) +     a n   sin         e −κ(nπ/h) t
                                                                h       h
                                                       n=1


                   9.4      Inhomogeneous Equations with Homogeneous
                            Boundary Conditions


                   Now consider the heat equation with a time dependent source, s(x, t).

                                u t = κu xx + s(x, t),  u(0, t) = u(h, t) = 0,  u(x, 0) = f(x).    (9.10)

                   In general we cannot transform the problem to one with a homogeneous differential equa-
                   tion. Thus we cannot represent the solution in a series of the eigen-solutions of the partial
                   differential equation. Instead, we will do the next best thing and expand the solution in a
                   series of eigenfunctions in X n (x) where the coefficients depend on time.

                                                            ∞
                                                           X
                                                  u(x, t) =    u n (t)X n (x)
                                                           n=1

                   We will find these eigenfunctions with the separation of variables, u(x, t) = X(x)T(t)
                   applied to the homogeneous equation, u t = κu xx , which yields,

                                                     r
                                                        2     nπx
                                                                              +
                                            X n (x) =     sin        ,  n ∈ Z .
                                                        h       h
                   We expand the heat source in the eigenfunctions.

                                                        ∞       r
                                                       X          2     nπx
                                             s(x, t) =     s n (t)  sin
                                                                  h       h
                                                       n=1
                                                   r    Z  h
                                                      2          nπx
                                           s n (t) =        sin        s(x, t) dx,
                                                      h  0        h

                   We substitute the series solution into Equation 9.10.
                     ∞       r                      ∞               r              ∞       r
                    X     0     2     nπx        X         nπ   2  2    nπx   X           2    nπx
                        u (t)     sin        =−κ       u n (t)          sin     +     s n (t)   sin
                          n
                     n=1        h       h          n=1         h      h      h    n=1         h      h


                                                             92
   94   95   96   97   98   99   100   101   102   103   104