Page 66 - 4811
P. 66

Infinitely Many Poles



                                            f(t)



                                           1






                                          0.5






                                           0                                         t
                                                     a        2a      3a       4a

                                                Figure 4.5 – Plot of series (4.15)


                                                                   y


                                                           P n
                                                       s


                                                                            x 0   x
                                                   2 2
                                                            2 2
                                           −(n + 1) π     −n π      O







                                                     Figure 4.6 – Parabola
                .


                   Solution. Setting
                                                        √        √
                                                      e  s  − e − s  = 0

                   leads to
                                                            √
                                                          e 2 s  = 1,

                   implying
                                               √
                                             2 s = 2nπi, n = ±1, ±2, . . . ,

                   and so
                                                         2 2
                                               s = −n π , n = 1, 2, 3, . . .
                                                n

                                                           √        √
                                                                                       n
                   are simple poles of F(s) since (e        s  − e − s ′     = (−1) /nπi ̸= 0.
                                                                      )

                                                                         s=s n
                   When n = 0, F(s) also has a simple pole at s = 0 because
                                                                          0
                           √        √                 √                          √
                          e  s  + e − s         (1 +     s +  s  + · · · ) + (1 −   s +  s  − · · · )
                       √     √ s    − s    = √          √     2!  s                 √    2!  s        =
                                      √
               . . . .   s(e    − e      )      s[(1 +     s +  2!  + · · · ) − (1 −  s +  2!  − . . .)]
                                                              65
   61   62   63   64   65   66   67   68   69   70   71