Page 70 - 4811
P. 70

Branch Point


               To compute this latter integral, we use that


                                                     ∫
                                                          e           √
                                                        ∞   −u
                                                          √ du =        π.
                                                      0      u
               Setting u = tx, du = tdx and

                                                ∫  ∞                     ∫  ∞
                                        √              e −tx         √        e −tx
                                          π =        √ √ tdx =         t       √ dx.
                                                 0      t x               0      x

               Therefore,
                                                            (√ )
                                                          1      π        1
                                                f(t) =        √      = √      .
                                                         π       t         πt

               Another useful example involving a branch point that arises in the solution of
               certain partial differential equations is the determination of

                                                       (      √  )
                                                          e −a s
                                                    −1
                                                  L                 , a > 0.
                                                             s


               As in the preceding example, s = 0 is a branch point. Thus we can use the same
               contour (Figure 4.7) and approach in applying the complex inversion formula.
                             √
                   For w =      s we take a branch cut along the non positive real axis and consider
                                                                √
               the (single-valued) analytic branch w =             |s|e iθ/2  with positive real part.
                                        √                  1
                   Again, F(s) = e    −a s /s is analytic within and on C so that
                                                                              R
                                                      √                   √
                                          ∫     ts −a s        ∫      ts−a s
                                               e e                  e
                                                         ds =                ds = 0.
                                                   s                    s
                                           C R                   C R
               Thus,

                                               √                        √                        √
                                 ∫  x 0 +iy                  ∫                        ∫
                             1            e ts−a s        1        e ts−a s        1       e ts−a s
                      0 =                         ds +                     ds +                     ds+
                            2πi   x 0 −iy    s           2πi   AB     s           2π   BC      s
                                        √                        √                        √
                              ∫    ts−a s             ∫      ts−a s            ∫      ts−a s
                           1      e               1         e               1        e
                        +                  ds +                     ds +                     ds.         (4.21)
                          2π          s          2πi           s           2πi          s
                               γ r                     DE                        EF
                                                                                  √
                            iθ
               For s = Re on the two circular arcs AB and EF, w =                   s = Re   iθ/2  and
                                                                             1
                                                                   √
                                                         √
                                                     e         e −a R cos θ/2    1
                                                     −a s
                                         |F(s)| =           =                <      ,
                                                        s
                                                                    |s|          |s|
               and so as in the preceding example,

                                                     √                          √
                                          ∫      ts−a s             ∫      ts−a s
                                               e                          e
                                     lim                ds = lim                   ds = 0.
                                    R→∞            s          R→∞            s
                                            AB                        EF
                                                              69
   65   66   67   68   69   70   71   72   73   74   75