Page 61 - 4811
P. 61

Complex inversion formula
                .



                                                                               e ts   e at
                                                               ts
                                     Res(a) = lim(s − a)e F(s) = lim               =      .
                                                 s→a                      s→a s        a
                   Whence
                                                              1
                                                                  at
                                                     f(t) = (e − 1).
                                                              a
                   Of course, F(s) could have been inverted in this case using

                   partial fractions or a convolution.
               . . . . .
                .



                   Example 4.2,

                                                      1                     1
                                      F(s) =                  =                         .
                                                                            2
                                                    2
                                                          2 2
                                                s(s + a )        s(s − ai) (s + ai)    2
                   Then F(s) has a simple pole at s = 0 and a pole of order 2 at
                                                              5
                   s = ±ai. Clearly, |F(s)| ≤ M/|s| for all |s| suitably large.
                                                                            e ts        1
                                                       ts
                                    Res(0) = lim se F(s) = lim                      =     .
                                                                          2
                                                                                2 2
                                                s→0                s→0 (s + a )        a 4
                                                                                  (             )
                                             d                                 d        e ts
                                                          2 ts
                          Res(ai) = lim         ((s − ai) e F(s)) = lim                            =
                                       s→ai ds                           s→ai ds    s(s + ai)  2
                                                          it         e iat
                                                      =      e iat  −    .
                                                         4a 3        2a 4
                                                                                    (              )
                                              d                                   d        e ts
                                                           2 ts
                       Res(−ai) = lim            ((a + ai) e F(s)) = lim                              =
                                       s→−ai ds                           s→−ai ds     s(s − ai)  2
                                                       −ite  −iat    e −iat
                                                    =             −       .
                                                          4a 3        2a 4

                   Therefore,

                                                         1     it                      1
                   Res(0)+Res(ai)+Res(−ai)=                 +      (e iat  − e −iat ) −  (e iat  + e −iat ) =
                                                         a 4  4a 3                   2a 4
                                             1  (      a                   )
                                         =        1 − t sin at − cos at = f(t).
                                             a 4       2
               . . . . .
                .



                   Example 4.3,
                                                                 P(s)
                                                       F(s) =          ,
                                                                 Q(s)

                   where P(s) and Q(s) are polynomials (having no common roots) of
                   degree n and m, respectively, m > n, and Q(s) has simple roots
                   at z , z , . . . , z . Then F(s) has a simple pole at each s = z , and
                        1
                             2
                                       m
                                                                                                     k
               . . . . .
                                                              60
   56   57   58   59   60   61   62   63   64   65   66