Page 63 - 4811
P. 63
Complex inversion formula
y
x 0 + iy n
C n
z 2 z 1
x 0 x
O
z n
x 0 − iy n
Figure 4.3 – Contour enclosing the first n poles
Once again, if it can be demonstrated that
∫
ts
lim e F(s)ds = 0, (4.13)
n→∞
C n
whereby |y | → ∞, then we achieve the representation
n
∫ x 0 +i∞ ∞
1 ∑
ts
f(t) = e F(s)ds = Res(z ). (4.14)
k
2πi x 0 −i∞
. k=1
Example 4.4, Find
( )
1
−1
L , a > 0.
as
s(1 + e )
. . . . .
y
2πni
R n
C n
x
x 0
O
−2πni
Figure 4.4 – s-plane
.
Solution. The function
1
F(s) =
as
. . . . s(1 + e )
62