Page 69 - 4811
P. 69

Complex inversion formula


                                         ∫     ts          ∫       ts          ∫       ts
                                      1       e          1        e         1        e
                                   +         √ ds +              √ ds +              √ ds.               (4.18)
                                     2π         s       2π          s       2π         s
                                           γ r               DE                  EF
                                iθ
                   For s = Re lying on the two arcs AB and EF, we have
                                                                    1
                                                       |F(s) =          ,
                                                                 |s| 1/2

               so that by Remark 4, part 2), coupled with the argument used in the proof of
               Lemma 1 to treat the portions of these arcs from A to x = 0 and from x = 0 to F,
               we conclude that

                                              ∫       ts            ∫       ts
                                                    e                     e
                                         lim        √ ds = lim            √ ds = 0.
                                        R→∞           s       R→∞           s
                                                AB                    EF
                            iθ
               For s = re on γ ,
                                   r
                               ∫              ∫  −π                     ∫  −π
                                     e ts             e tr cos θ
                                                                    √          tr cos θ
                                   √ ds ≤                    rdθ =     r       e       dθ → 0

                                      s               r 1/2
                                 γ r             π                          π
               as r → 0 since the integrand is bounded.
                   Finally, we need to consider the integrals along BC and DE. The values of

               these integrals converge to the values of the corresponding integrals when BC
               and DE are the upper and lower edges, respectively, of the cut along the
                                                                                                             iπ
               negative x-axis. So it suffices to compute the latter. For s on BC, s = xe ,
               √         √              √
                  s =      xe iπ/2  = i x, and when s goes from −R to −r, x goes from R to r.
               Hence
                             ∫      ts       ∫  −r   ts          ∫  r  −tx          ∫  R  −tx
                                   e                e                e            1      e
                                   √ ds =           √ ds = −          √ dx =             √ dx.           (4.19)
                               BC    s         −R     s           R  i x          i  r      x
                                          √      √                 √
               Along DE, s = xe      −iπ ,  s =     xe −iπ/2  = −i x, and

                        ∫       ts       ∫  −R   ts          ∫  R   −tx           ∫  R   −tx
                              e                 e                  e            1      e
                              √ ds =           √ ds = −              √ dx =             √ dx.            (4.20)
                          DE    s         −r      s           r   −i s          i   r     x
               Combining (4.19) and (4.20) after multiplying each by 1/2πi gives


                                      ∫                    ∫                    ∫  R
                                   1        e ts       1         e ts         1      e −tx
                                            √ ds +               √ ds = −             √ dx.
                                 2πi    BC    s       2πi   DE     s          π   r     x

               Letting R → ∞ and r → 0 in (4.18) yields

                                                  ∫  x 0 +i∞  ts         ∫  ∞   −tx
                                               1            e          1       e
                                        0 =                 √ ds −             √ dx;
                                             2πi              s       π          x
                                                    x 0 −i∞               0
               in other words,

                                           (     )          ∫  x 0 +i∞  ts         ∫  ∞   −tx
                                               1         1             e         1       e
                                        −1
                             f(t) = L         √     =                 √ ds −             √ dx;
                                                s       2πi              s       π          x
                                                              x 0 −i∞                0
                                                              68
   64   65   66   67   68   69   70   71   72   73   74