Page 62 - 4811
P. 62

Infinitely Many Poles
                .



                   writing (a , b ̸= 0)
                                 n
                                    m
                                    n
                                a s + a       s n−1  + · · · + a          a +    a n−1  + · · · +  a 0
                                                                            n
                                                                                                 n
                     F(s) =      n        n−1                  0  =        (      s             s     ),
                                   m
                               b s + b    m−1 s m−1  + · · · + b 0   s m−n   b +    b m−1  + · · · +  s b 0
                                m
                                                                              m
                                                                                                    m
                                                                                      s
                   it is enough to observe that for |s| suitably large,
                                    a
                                                       0
                                      n−1            a
                              a +          + · · · +    ≤ |a | + |a  n−1 | + · · · + |a | = c ,
                                n
                                                               n
                                                                                        0
                                                                                               1
                                       s             s n

                                b               b               |b
                                                                                     0
                                                                                              m
                                m−1              0              m−1  |           |b |     |b |
                         b +         + · · · +      ≥ |b | −           − · · · −      ≥        = c ,
                          m
                                                          m
                                                                                                     2
                                 s             s m               |s|             |s| m     2
                   and thus
                                                                  c /c 2
                                                                   1
                                                      |F(s)| ≤           .
                                                                 |s| m−n
                   Hence,
                                                       z k t
                                                      e P(z )
                                        Res(z ) =              k  , k = 1, 2, . . . , m,
                                                k
                                                        Q (z )
                                                          ′
                                                             k
                   and
                                                            m
                                                           ∑    P(z )
                                                                     k
                                                                         z k t
                                                   f(t) =               e .
                                                                Q (z )
                                                                  ′
                                                           k=1       k
               . . . . .
                     Infinitely Many Poles
                                                                               ∞
               Suppose that F(s) has infinitely many poles at {z }                 all to the left of the line
                                                                            k k=1
               Re(s) = x > 0, and that
                            0
                                                     |z | ≤ |z | ≤ · · · ,
                                                               2
                                                       1
               where |z | → ∞ as k → ∞. Choose a sequence of contours Γ = C ∪ [x −
                                                                                            n
                                                                                                    n
                          k
                                                                                                            0
               iy , x + iy ] enclosing the first n poles z , z , . . . , z as in Figure 4.3. Then by the
                                                                    2
                      0
                             n
                  n
                                                                1
                                                                             n
               Cauchy residue theorem,
                                                 ∫                    n
                                             1                       ∑
                                                       ts
                                                     e F(s)ds =          Res(z ),
                                                                                k
                                            2πi
                                                  Γ n
                                                                     k=1
                                                                   ts
               where as before, Res(z ) is the residue of e F(s) at the pole s = z .
                                           k
                                                                                              k
                   Hence
                              n                     ∫                            ∫
                             ∑                  1     x 0 +iy n               1
                                                                                       ts
                                                               ts
                                 Res(z ) =                   e F(s)ds +               e F(s)ds.
                                         k
                                               2πi                           2πi
                             k=1                     x 0 −iy n                     C n
                                                              61
   57   58   59   60   61   62   63   64   65   66   67