Page 16 - 4811
P. 16

any function f.
               . . . . .





                            2. Properties of Laplace Transform




                     Linearity



                   Theorem 2.1È


                   Let f(t) and g(t) be functions whose Laplace transforms exist and let α
                   and β be scalars. Then


                                       L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)].
               . . . . . . .

                  PROOF. Using the definition of the Laplace transform


                           ∞                                    ∞                     ∞
                          ∫                                    ∫                    ∫
                              e −st  (αf(t) + βg(t)) dt = α       e −st f(t) dt + β     e −st g(t) dt.

                           0                                   0                     0
               . . . .
                .


                   Example 2.1, f(t) = cos bt. Evaluate Lf(t).
               . . . . .
                .

                   Solution. To compute the Laplace transform we will use the Euler formula
                   and Property of Linearity

                                                     iθ
                                                    e = cos θ + i sin θ,

                   which implies that
                                                                iθ
                                                              e + e   −iθ
                                                     cos θ =              .
                                                                   2
                                                                                     2
                                                                               2
                                         2
                   Therefore, using i = −1 and (s − ib)(s + ib) = s + b we can write:
                                           [             ]       (                   )
                                             e ibt  + e −ibt   1      1          1             s
                           L[cos bt] = L                   =               +            =           .
                                                                                             2
                                                  2            2   s − ib     s + ib       s + b  2
                   Thus,
                                                                     s
                                                    L[cos bt] =           .
                                                                   2
                                                                  s + b  2
               . . . .




                                                              15
   11   12   13   14   15   16   17   18   19   20   21