Page 35 - 4749
P. 35

The  longitudinal  force  in  any  section:  N   qx   Ax .  The
                                                         x
           tension in this section     N  A   x . Diagrams  N   and   are
                                   x    x                      x      x
           shown in fig. 2.8,c  and  2.8,d.
             The displacement of the arbitrary cross-section is according to
           the formula (2.23):
                                       x   Ax         x 2
                                    o 
                           u    x   u    dx   u     .
                                                   o
                                       o  EA          2E

















                                      Figure 2.8

                                               u
                                                      0
             When  x   (rigidly fixed section)    l  :
                        l
                                             l   2
                                      u       .
                                       o
                                            2E
             The expression for determing a displacement takes the form
                                     l   2   x 2  
                                                     2
                           u   x              x   l  2   .
                                    2E   2E    2E
             So, the displacement is changing on the basis of the quadratic
           dependence (fig.2.8, f.).
             The influence of rod own weight cannot be ignored if we are
           dealing with long rods (ropes, beams, pipe columns) or rods from
           the materials that have a relatively low strength (stone, brick) with
           enough weight.


                                          35
   30   31   32   33   34   35   36   37   38   39   40