Page 22 - 4749
P. 22

Figure 1.11



             Internal  force  factors  can  be  expressed  by  full  stress
           components. Consider the elementary area  dA  of the cross section
           A   (fig.1.11).  On  the  area  dA   there  are  elementary  forces dA  ,
             dA ,    dA.    Multiplying  each  elemental  force  by  a  distance
            y      z
           corresponding to the axis, we obtain the basic aspects of internal
           forces:

                           dM     dA y    dA z   ,
                               x    z         y
                           dM     dA z   ,
                               y
                           dM      dA y   .
                               z

             Summing  the  elementary  forces  and  moments  on  the  cross-
           sectional  area,  we  get  the  integral  relationship  between  internal
           force and stress factors:

                                                        
                                           
                    N      dA ;  M      z  y   y   z dA ; 
                      x 
                                     x 
                          A              A              
                                                        
                    Q     y dA ;  M     zdA ;                    (1.2)
                      y 
                                     y 
                         A               A              
                                                        
                                     z 
                    Q     z dA ;  M     ydA .       
                      z 
                         A               A              

           1.8 Model of a deformable rod

             The  model  of  deformable  rod  is  based  on  the  system  of
           hypotheses, which validity has been confirmed experimentally.


                                          22
   17   18   19   20   21   22   23   24   25   26   27