Page 64 - 4549
P. 64

We  will  show  that  if  y   y  (x )  and  y   y  (x )   is
                                                                1    1           2    2
                                 decisions     of      equation      (4.3),    a      function
                                  y (x )   C  y   (x ) C   y  (x )   also  will  be  decision  of  this
                                          1  1       2  2
                                 equation  at  any  values  С   and  С .  Indeed,  as  y and  y     -
                                                          1        2              1      2
                                 decisions (4.3)
                                                                 
                                  y   a  y   a  y    0  and  y   a  y   a  y    0 .
                                   1    1  1   2  1         2    1  2    2  2
                                     Taking into account these to equality, we will get

                                 (C   y  C   y  )   a  (  C   y  C   y  )   a  (  C   y  C   y  ) 
                                    1  1   2   2     1   1   1   2   2    2    1  1    2  2
                                                                  
                                 C   y  C   y   a  (  C   y  C   y  )  a  (  C   y  C   y  ) 
                                   1  1     2  2    1    1  1    2   2    2    1  1    2  2
                                                                 
                                 C  (y   ya    a  y  ) C  (y   ya   a  y  )  C   0C   0   0
                                   1  1    1  1   2  1   2  2    1  2   2  2    1      2

                                     And it means that a function  (xy  )   C  y   (x ) C   y  (x )
                                                                           1  1       2  2
                                 is a decisions of equation (4.3), that and it was needed to lead to.
                                     Consequently, if  y ,  y ,..... y  - decisions of equation (4.2),
                                                       1  2     n
                                 a  function,  y( x )  C 1  y   1 ( x )  C 2  y   2  ( x .....)    С  n  y   n   where
                                 C ,  C ,..... С  – arbitrary constant, also is a decision of equation
                                   1  2     n
                                 (4.2).

                                     4.2.  Linear  Dependence  and  Linear  Independence  of
                                 Systems of Functions

                                     Definition  4.3  Linear  function  y y  , , y   is  named
                                                                         ,
                                                                        1  2      n
                                 combination of functions

                                                             Y   C y     C y                                (4.5)
                                                         1 1        n  n

                                 it is formed  from  the set functions by linear operations, that is
                                 operations of increase on a number  and  addition.
                                                                          ,
                                     Definition 4.4 System of functions  y y  , , y  certain on
                                                                         1  2     n
                                      
                                  ,a b   is  named  linearly  dependent  on  this  interval,  if  it  is
                                                               62
   59   60   61   62   63   64   65   66   67   68   69