Page 66 - 4549
P. 66

n
                                         P  ( )x   C   C x C x  2      C x   0
                                          n       0    1     2          n
                                         P  ' ( )x   C   2C x     nC x  n 1    0
                                          n       1     2          n
                                         P '' ( )x   2C   3 2C x     ( n n  1)C x n 2    0
                                          n         2       3                n
                                                                         P  ( )n  ( )x   ! n C  .
                                                                         0
                                                         n           n
                                                                            .
                                                                                0
                                     From  the  last equation of  this system  C  .  Then  from
                                                                             n
                                 next to last equality we find that  C    0. Farther „going up"
                                                                    n 1
                                 we find  C n 2    0 , , C  .
                                                            0
                                                         0

                                     4.3 Linear  Homogeneous  Differential  Equations

                                     For construction of common decision  LHDE  it is needed is
                                 deep  to  learn  the  question  of  linear  dependence  of  decisions
                                 parts of these equations To that end we will enter notion of so
                                 called Wronskian.

                                          4.3.1. Wronski-Determinante

                                                                  ,
                                     Definition 4.6 If functions  y y  , , y   (n-1) are one time
                                                                1   2     n
                                 differentiated  on  an  interval( , )a b   is  named  Wronski-
                                 Determinante or Wronskian
                                                     y     y       y
                                                      1     2     n
                                                            '
                                                     y '   y      y  '
                                           W  ( )x   1   2        n  .                             (4.6)
                                                     
                                                    y 1 (n 1)  y 2 ( n 1)    y (n 1)
                                                                   n

                                     In particular, at  n=2
                                                          y     y
                                                           1     2
                                                                          
                                                                                 
                                     .                 W  ( )x     y y   y y ,            (4.7)
                                                                              2 1
                                                                       1
                                                                         2
                                                          y 1   y 2 

                                                               64
   61   62   63   64   65   66   67   68   69   70   71