Page 67 - 4549
P. 67

There are such properties  of Wronskian.

                                                                 ,
                                     Theorem 4.1 If functions   y y  , , y   linearly dependent
                                                                1  2      n
                                 on( , )a b their  Wronski-Determinante  of  equals  a  zero on  this
                                 interval.
                                      At  n=2   we have y   ky from here
                                                        2     1

                                              y 1  y 2     y 1  k y 1     y 1  y 1
                                     W  ( )x                         k            0 ,
                                              y '  y '     y '  ky '      y '  y '
                                               1     2      1     1        1    1

                                 that  and  it was needed to lead to.
                                                                    ,
                                      Theorem 4.2  Let functions  y y  ,  , y   be  the upshots
                                                                   1  2      n
                                 of  LHDE  –  n    (4.2)    on  ( , )a b .  If  for  some
                                                                    0
                                 x   ( , )a b  W  ( )x    0 ,    W  ( )x    for  all  x   ( , )a b  .
                                   0               0
                                     As  well  as  higher,  we  will  consider  a  case    n=2.  Lets
                                  y   y   –  decisions LHDE (4.3).
                                   1   2
                                     Then
                                             
                                      y   a  y   a  y    0
                                       1
                                            1
                                                    1
                                             1
                                                  2

                                              
                                      y   a  y   a  y    0
                                       2    1  2   2  2
                                     We will increase the first equation on  y , and  second  - on
                                                                           2
                                  y  . We will take away from got the second equality first, will
                                   1
                                 get :
                                                             
                                      y  y   y  y   a  ( yy   y  y  )   0 .
                                       1  2   2  1  1  1  2   2  1

                                     If to take  (4.7) into account, the last equality will acquire a
                                 kind :
                                     W  (  x )  Wa  (x )   0 .                                                        (4.8)
                                              1

                                     We  will  find  the  decision  of  this  equation  subject  to  the
                                 condition
                                     W  ( )x 0    W   0 .                                                             (4.9)
                                                0
                                                               65
   62   63   64   65   66   67   68   69   70   71   72