Page 67 - 4549
P. 67
There are such properties of Wronskian.
,
Theorem 4.1 If functions y y , , y linearly dependent
1 2 n
on( , )a b their Wronski-Determinante of equals a zero on this
interval.
At n=2 we have y ky from here
2 1
y 1 y 2 y 1 k y 1 y 1 y 1
W ( )x k 0 ,
y ' y ' y ' ky ' y ' y '
1 2 1 1 1 1
that and it was needed to lead to.
,
Theorem 4.2 Let functions y y , , y be the upshots
1 2 n
of LHDE – n (4.2) on ( , )a b . If for some
0
x ( , )a b W ( )x 0 , W ( )x for all x ( , )a b .
0 0
As well as higher, we will consider a case n=2. Lets
y y – decisions LHDE (4.3).
1 2
Then
y a y a y 0
1
1
1
1
2
y a y a y 0
2 1 2 2 2
We will increase the first equation on y , and second - on
2
y . We will take away from got the second equality first, will
1
get :
y y y y a ( yy y y ) 0 .
1 2 2 1 1 1 2 2 1
If to take (4.7) into account, the last equality will acquire a
kind :
W ( x ) Wa (x ) 0 . (4.8)
1
We will find the decision of this equation subject to the
condition
W ( )x 0 W 0 . (4.9)
0
65