Page 60 - 4549
P. 60
Example 3.6 To find the general integral of differential
equation 1 y 2 y y .
dp
We will lay down y p (y ), y . p Equation
dy
dp
2
1 p yp ;this equation of the first order in relation to р(у)
dy
with the separated variables will collect a kind . We separate
variables and integrate:
pdp dy 1 d (p 2 )1 dy 2
; ; ln( p )1 ln2 y ln2 c ;
p 2 1 y 2 p 2 1 y 1
p 2 1 c 2 y 2 ; p c 2 y 2 . 1
1 1
From here, going back to an old unknown function y , we
will get:
dy 1 d (c ) y
y c 1 2 y 2 ,1 dx , 1 dx .
c 2 y 2 1 c 1 (c ) y 2 1
1 1
It is possible to write down the general integral of the given
equation in a kind:
dy 1 d (c ) y
y c 2 y 2 ,1 dx , 1 dx .
1 2 2 2
c y 1 c 1 (c ) y 1
1 1
Example 3.7 To solve Cauchy task
3
3
y y y 1 , 0 y ) 1 ( , 1 y ) 1 ( 3 .
2
58