Page 60 - 4549
P. 60

Example 3.6   To  find  the  general integral  of differential
                                           
                                 equation 1 y 2    y y  .  
                                                                                dp
                                                                 
                                                                              
                                      We  will  lay  down  y      p (y ),  y     . p Equation
                                                                                dy
                                             dp
                                      2
                                 1 p    yp   ;this equation of the first order in relation to р(у)
                                             dy
                                 with  the  separated  variables  will collect  a  kind  .  We  separate
                                 variables and integrate:
                                   pdp    dy   1 d (p  2   )1  dy      2
                                           ;                 ;  ln( p   )1   ln2  y   ln2  c  ;
                                  p  2  1  y  2    p  2  1   y                          1

                                  p 2   1  c 2  y  2 ;  p     c  2  y 2    . 1
                                          1              1

                                     From here, going back to an old unknown function  y , we
                                 will get:
                                                       dy             1     d  (c  ) y
                                    y     c 1 2  y  2   ,1    dx ,      1        dx .
                                                                                         
                                                     c 2  y 2  1     c 1  (c  ) y  2  1
                                                      1                      1
                                     It is possible to write down the general integral of the given
                                 equation in a kind:

                                                       dy             1     d  (c  ) y
                                    y     c 2  y  2   ,1    dx ,        1        dx .
                                                                                         
                                          1           2  2                      2
                                                     c  y  1         c 1  (c  ) y  1
                                                      1                      1
                                                                                                                                 

                                     Example       3.7     To      solve     Cauchy       task
                                                                   3
                                   3
                                  y  y     y  1   , 0  y  ) 1 (   , 1   y  ) 1 (   3  .
                                                                   2





                                                               58
   55   56   57   58   59   60   61   62   63   64   65