Page 65 - 4549
P. 65

possible to pick up such numbers C  ,C  , ,C   not all levels to
                                                                   1  2      n
                                 the zero and such, that linear combination

                                       C y      C y   0 at  x   ( , )a b  .
                                        1 1        n  n

                                        Implementation of this condition means that even one of the
                                 set functions it is possible to express through other linearly. For
                                                 0
                                 example, ifC  ,
                                             n
                                                                       C
                                  y     y     y       y  ,    k  ,k   1,2, ,(n  1).
                                   n   1 1    2  2       n 1  n 1  k
                                                                       C
                                                                        n
                                 Definition  4.5  If  at  all    x   ( , )a b   linear  combination
                                 C y      C y   0 only then, when  the system of functions
                                   1 1        n  n
                                  y  , y  , , y     is named  linearly independent  on  ( , )a b  .
                                   1  2      n
                                     In  this  case  none  of  the  set  functions  it  is  impossible  to
                                 express through other linearly.
                                        For   example,   such    elementary    functions    as
                                                     2
                                         2
                                  y   sin x  , y   cos x  , y    are  linearly  dependent  on
                                                               1
                                   1           2           3
                                        )
                                     ,
                                 (  ,      because    of    C y   C y   C y   0       at
                                                                1 1    2  2   3  3
                                                     1
                                 C   1,C   1,C   .
                                   1      2      3
                                     For two functions (n=2)   y  , y  it is possible to write down
                                                              1    2
                                 such condition of linear dependence :
                                               y     C
                                                      2     1    k   const , from where   y   ky .
                                               y 1   C 2                          2     1

                                     This  condition  is  equation  of  straight  line  in  coordinates
                                  y  , y ,  from here and the name  - linear dependence.
                                   1   2

                                     Example.  4.1  Make  sure  that  a  system  of  functions
                                             n
                                                                             ,
                                                                                )
                                 1, ,x x  2 , , x  is linearly independent  on  (  .
                                        We differentiate an identity
                                                               63
   60   61   62   63   64   65   66   67   68   69   70