Page 61 - 4549
P. 61

   As  well  as  in  a  previous  example  we  will  lay  down
                                                                   3
                                   3
                                  y  y     y  1   , 0  y  ) 1 (   , 1   y  ) 1 (   3  .
                                                                   2

                                     Obsessed equation of the first order in relation to р(у) with
                                                              dp
                                                          3
                                                            2
                                 the separated variables:  y  p    1   . 0  We separate variables
                                                              dy
                                 and integrate:

                                                              
                                  p  2  dp    y  3  dy ,    p  2 dp     y  3  dy ,
                                  p 3    1                3
                                             c  ,  p   3     3c  .
                                  3    2y  2   1         2y 2     1
                                                   dy
                                                
                                     So if  p   y   , we will rewrite the last equation in such
                                                   dx
                                               3
                                        
                                 type  y   3       3c 1  .  Preliminary  will  find  the  value  of
                                             2y 2
                                 arbitrary  constant  с 1,  putting  from  initial  conditions
                                               3
                                  y    , 1   y    3  .  Obsessed  equation  in  relation  to  с 1:
                                               2
                                    3        3
                                 3        3      3c 1  ,   from  where  с 1=0.  Thus,  we  come  to
                                   2y      2y 2
                                                      1
                                                  3
                                             
                                 equation  y   (    )  3  ,  which  easily  gets  untied  by  the
                                                 2y  2
                                 separation of variables and subsequent integration:

                                            3y 2  1      dy            3      2
                                                3
                                                                                  
                                      dy   (  ) dx ,          dx ,  3    y  3 dy   dx ,
                                             2          3y  2  1       2
                                                       (    )  3
                                                         2
                                                               59
   56   57   58   59   60   61   62   63   64   65   66