Page 55 - 4549
P. 55
d cos x 1
cos2 x c 1 cos x cos2 x c 1 cosx 2 c 1 cos . x
2
cos x cos x
As, we come to differential equation z y of the 1-st
type, which easily gets untied by double integration:
,
y 2 с cos , x y ( 2 с cos x )dx 2x с sin x c
1 1 1 2
2
y 2 ( x с 1 sin x c 2 )dx x c 1 cos x c 2 x c 3 .
Thus, the sought common decision after of the given
equation of 3-rd order was got:
2
y x c cos x c x c .
1 2 3
Example 3.4 To find the partial decision of equation
y
y x y ln , ) 1 ( y e , y ) 1 ( e 2 .
x
We have equation of 2-nd type (n=2, k=1), as it does not
contain y. We will bring an order down of this equation on 1,
laying down z . y Then y , z and the given equation
grows into homogeneous differential equation of the first order
of relatively unknown function of z:
z z z
zx z ln or z ln .
x x x
z
We decide it by substitution u , z ux , then
x
z u x , u and the given equation collects a kind
u x u u ln . u
Separating variables and integrating, we find consistently:
du dx d (lnu )1 dx
, , ln lnu 1 ln x lnc ,
u (lnu )1 x lnu 1 x 1
ln u 1 c , x ln cu x , 1 u e c 1 x 1 , z xe c 1 x 1 .
1 1
53