Page 55 - 4549
P. 55

d  cos x                  1
                                    cos2  x      c 1  cos x   cos2  x   c 1  cosx   2   c 1  cos  . x
                                                2
                                            cos x                    cos x

                                     As,  we  come  to  differential  equation  z   y    of  the  1-st
                                 type, which easily gets untied by double integration:

                                                                                          ,
                                        y   2   с  cos  , x   y   ( 2   с  cos x )dx   2x   с  sin x   c
                                             1                1                1        2
                                                                  2
                                      y     2 ( x   с 1  sin x   c 2  )dx   x   c 1  cos x   c 2  x   c 3 .

                                     Thus,  the  sought  common  decision  after  of  the  given
                                 equation of 3-rd order was got:
                                           2
                                      y   x   c  cos x   c  x   c  . 
                                               1        2    3

                                     Example  3.4      To  find  the  partial  decision  of  equation
                                            y
                                   y x     y ln  ,  ) 1 ( y    e , y  ) 1 (   e 2 .
                                            x

                                       We have equation of 2-nd type (n=2, k=1), as it does not
                                 contain y. We will bring an order down of this equation on 1,
                                                               
                                 laying  down  z   . y   Then  y   , z     and  the  given  equation
                                 grows into homogeneous differential equation of the first order
                                 of relatively unknown function of z:
                                                            z          z   z
                                                                    
                                                     
                                                    zx   z ln    or    z   ln  .
                                                            x          x   x
                                                                               z
                                     We  decide  it  by  substitution  u       , z   ux , then
                                                                               x
                                   
                                 z   u x   , u  and the given equation collects a kind
                                     u x   u   u  ln  . u
                                     Separating variables and integrating, we find consistently:
                                     du       dx     d (lnu   )1  dx
                                               ,                 ,  ln  lnu  1   ln x   lnc  ,
                                 u (lnu   )1  x      lnu  1      x                        1
                                 ln u  1  c  , x  ln  cu  x    , 1  u   e c 1 x  1   , z   xe c 1 x  1 .
                                           1           1
                                                               53
   50   51   52   53   54   55   56   57   58   59   60