Page 30 - 4263
P. 30

Elements of Vector Algebra

                                                                      − → −→ −→
               −→           −→
                k =1. These a vectors are called as orths. Due to orths i , j , k are non-complanar, these
               vectors form the basis, which is called a rectangular (or orthogonal) basis.
                                             − →
                   Let’s consider some vector a in space, and move it parallel to itself in order its beginning
                                   −−→     −→
               equals to the origin: OM = a .


                                                   M z




                                                               M(x, y, z)



                                                                −→
                                                   −→          z k
                                                   k    −→
                                                         j
                                                    O  . . . . . . . . . . . . .  M y
                                                     −→
                                               −→     i
                                             x i
                                          M x
                                                     −→        P
                                                    y j

                                       Figure 4.13 – Expansion of a vector by basis

                                                                                   −−→
                   Let’s build a parallelepiped with a diagonal that equals to vector OM. It is obvious, that
                     −−→     −−→     −−−→      −→         −−−→     −−→ −−→       −−→              −−→
               −→                                                                            −→
                a = OM = OM x + M x P + PM. Due to M x P = OM y , PM = OM z , then a = OM x +
               −−→      −−→           −−→ −−→ −−→                                      − →
               OM y + OM z . Vectors OM x , OM y , OM z are component parts of vector a on axis Ox, Oy,
                            −−→         −−→ −→ −−→          −−→ −→ −−→           −−→ −→
               Oz, because OM x = pr x OM · i , OM y =pr y OM · j , OM z = pr z OM · k . Having marked
                                    −−→
               projections of vector OM on axis, correspondingly, as X, Y, Z, we will get the expansion of
                                      −→ −→ −→   −→       −→      −→      −→
                      −→
               vector a through basis i , j , k : a = X · i +Y · j +Z · k . Projections X, Y, Z are called
                                                     −→
               as the rectangular coordinates of vector a .

                     4.9. Separation of a closed interval in a given ratio


               To separate closed interval M 1 M 2 in the given ratio λ > 0 means to find on that interval such
               point M, for which the equality  M 1 M  = λ or M 1 M = λ·MM 2 takes place. Suppose, coordinates
                                             MM 2
               of points M 1 and M 2 are: M 1 = (x 1 ; y 1 ; z 1 ), M 2 = (x 2 ; y 2 ; z 2 ). Let’s find coordinates of point
                              −−−→           −→
               M. Obviously, M 1 M = λ · MM 2 or

                         − →            − →            −→                 −→            −→             − →
               (x − x 1 ) · i + (y − y 1 ) · j + (z − z 1 ) · k = λ · [(x 2 − x) · i + (y 2 − y) · j + (z 2 − z) · k ]

                   Following the equality of vectors, we will get equalities of their projections: (x − x 1 ) =
               λ · (x 2 − x); (y − y 1 ) = λ · (y 2 − y); (z − z 1 ) = λ · (z 2 − z). Thus,


                                         x 1 + λ · x 2    y 1 + λ · y 2   z 1 + λ · z 2
                                     x =            , y =           , z =           .
                                            1 + λ           1 + λ           1 + λ
               If point M is on the middle of interval M 1 M 2 , then M 1 M = MM 2 , λ = 1. In this case coordi-
               nates of point M are: x =  x 1 +x 2 , y =  y 1 +y 2  , z =  z 1 +z 2  . So, every coordinate of the middle of
                                            2          2          2
               the interval equals to the average arithmetic of corresponding coordinates of its ends.



                                                            30
   25   26   27   28   29   30   31   32   33   34   35