Page 97 - 4811
P. 97

Application of Laplace Transform
                .


                   We find by 3) that
                                                        u 1            √       u 0
                                            U(l, s) =       = c cosh      sl +    ,
                                                                1
                                                         s                      s
                   and so
                                                              u − u   0
                                                               1
                                                      c =           √ .
                                                       1
                                                            s cosh sl
                   Therefore,
                                                                        √
                                                       (u − u ) cosh sx          u
                                          U(x, s) =      1      0   √         +    0 .
                                                            s cosh sl             s
                   Taking the inverse by (4.17) gives

                                                                       (       √     )
                                                                         cosh sx
                                                                   −1
                                     u(x, t) = u + (u − u )L                    √       =
                                                         1
                                                  0
                                                               0
                                                                         s cosh sl
                                                   ∞
                                     4(u − u )    ∑      (−1)  n           2 2   2     2n − 1
                                         1
                                               0
                            = u +                                 e −(2n−1) π t/4l  cos        πx.
                                1
                                           π           (2n − 1)                           2l
                                                   n=1
               . . . .
                .
                   Example 5.23, Solve
                                               2
                                              ∂ u     ∂u
                                                   =      , 0 < x < 1, t > 0,
                                              ∂x 2    ∂t
                   for

                               +
                    1) u(x, 0 ) = f(x),
                    2) u(0, t) = 0, t > 0,
                    3) u(1, t) = 0, t > 0.
                .
               . . . . .
                   Solution. Therefore,
                                                     2
                                                    d U
                                                         − sU = −f(x).
                                                    dx 2
                   Here we solve this ODE by the Laplace transform method as well. To this
                   end, let Y (x) = U(x, s). Then Y (0) = U(0, s) = 0, Y (1) = U(1, s) = 0.
                              2
                   Setting a = s, we obtain
                                2
                                                                 2
                                                        ′
                              σ L(Y ) − σY (0) − Y (0) − a L(Y ) = −L(f) = −F(σ),
                   that is,
                                                           Y (0)        F(σ)
                                                             ′
                                               L(Y ) =             −           .
                                                                        2
                                                           2
                                                         σ − a   2    σ − a   2
                   Inverting gives
                                                                     ∫  x
                                                  ′
                                                Y (0) sinh ax      1
                          Y (x) = U(x, s) =                     −         f(u) sinh a(x − u)du =
               . . . .                                 a           a   0

                                                              96
   92   93   94   95   96   97   98   99   100   101   102