Page 102 - 4811
P. 102

Table of Laplace Transform Operations


                                                       Appendix



                     Table of Laplace Transform Operations






                                             F(s)                                         f(t)
                                      c F (s) + c F (s)                            c f (t) + c f (t)
                                                   2 2
                                                                                    1 1
                                       1 1
                                                                                                2 2
                                                                                              t
                                        F(as) (a > 0)                                     1 f( )
                                                                                         a    a
                                                                                          at
                                           F(s − a)                                      e f(t)
                                      e −as F(s) (a ≥ 0)                             u (t)f(t − a)
                                                                                      a
                                                      +
                                       sF(s) − f(0 )                                      f (t)
                                                                                            ′
                                  2
                                                  +
                                                             +
                                                                                           ′′
                                 s F(s) − sf(0 ) − f (0 )                                 f (t)
                                                          ′
                                                                             +
                                      +
                  n
                 s F(s) − s   n−1 f(0 ) − s  n−2 ′    +              (n−1) (0 )          f  (n) (t)
                                                 f (0 ) − · · · − f
                                              F(s)                                     ∫  t  f(τ)dτ
                                                s                                       0
                                             F (s)                                       −tf(t)
                                               ′
                                                                                           n n
                                            F  (n) (s)                                (−1) t f(t)
                                         ∫
                                           ∞  F(x)dx                                       f(t)
                                           s                                                t
                                                                                  ∫  t
                                          F(s)G(s)                                   f(τ)f(t − τ)dτ
                                                                                   0
                                                                                                     +
                                          lim sF(s)                                lim f(t) = f(0 )
                                          s→∞                                     t→0 +
                                          lim sF(s)                                     lim f(t)
                                          s→0                                           t→∞
                     Table of Laplace Transform
                                  F(s)                                         f(t)

                                    1                                          δ(t)
                                     1                                           1
                                     s
                                     1                                           t
                                    s 2
                           1  (n = 1, 2, 3, . . .)                              t n−1
                          s n                                                  (n−1)!
                                1  (ν > 0)                                      t ν−1
                               s ν                                            Γ(ν−1)
                                                                    t
                        (s−1) n  (n = 0, 1, 2, . . .)   L (t) =    e d n  (t e ) Laguerre polynomials
                                                                          n −t
                         s n+1                            n        n! dt n
                                     1                                          e at
                                   s−a
                                     1                                      1 (e − 1)
                                                                                at
                                  s(s−a)                                    a
                                                                               at
                                1     (a ̸= b)                                e −e bt
                           (s−a)(s−b)                                           a−b
                                                                                at
                                s     (a ̸= b)                                ae −be bt
                           (s−a)(s−b)                                           a−b
                                     s                                     (1 + at)e  at
                                  (s−a) 2
                                     a                                         sin at
                                   2
                                  s +a 2
                                                              101
   97   98   99   100   101   102   103   104   105   106