Page 101 - 4811
P. 101

Application of Laplace Transform
                .


                   Solution. By transforming the equation we obtain

                                                        2
                                                      d Y
                                                                2
                                                            − s Y = 0,
                                                      dx 2
                   whose solution is given by

                                            Y (x, s) = c cosh sx + c sinh sx.
                                                                         2
                                                          1
                   Then 0 = Y (0, s) = c and Y (x, s) = c sinh sx. Moreover,
                                            1
                                                                 2
                                                              a
                                                  Y (l, s) =    = c sinh sl
                                                                    2
                                                              s
                   and c = a/s sinh sl. Thus,
                         2

                                                                a sinh sx
                                                    Y (x, s) =             .
                                                                 s sinh sl

                   This function has simple poles at s = nπi/l, n = 0, ±1, ±2, . . .
                                                              n

                                                      a sinh sx            x cosh sx      ax
                                 Res(0) = lim se    ts           = a lim               =     .
                                             s→0       s sinh sl      s→0 l cosh sl        l

                   For n = ±1, ±2, . . . ,

                                                                                          (        )
                             (      )              (          )   ts                            πni
                                πni                       πni    e sinh sx                 s −
                        Res            = a lim       s −                      = a lim            l   ×
                                 l          s→ πni         l      s sinh sl        s→ πni  sinh sl
                                                l                                      l
                              ts
                            e sinh sx            a        e πnit/l  sinh  πnix   a                    πnx
                                                                                         n πnit/l
                   × lim                 =               ·               l   =      (−1) e        sin      .
                         πni      s         l cosh πni          nπi/l           πn                      l
                      s→
                          l
                   Therefore,
                                                               ∞
                                         ∑            ax      ∑             a             πnx
                             y(x, t) =       Res =        +        (−1)  n    e πnit/l  sin     =
                                                       l                   πn               l
                                                             n=−∞
                                                              n̸=0
                                                       ∞
                                            ax     2a  ∑   (−1)  n     πnx       πnt
                                        =       +                  sin       cos      ,
                                             l     π          n          l         l
                                                       n=1


               . . . .  by the complex inversion formula.
                   For a more detailed study of operational calculus you can take advantage of
               the references.












                                                              100
   96   97   98   99   100   101   102   103   104   105   106