Page 95 - 4811
P. 95

Application of Laplace Transform
                .



                   for
                               +
                    1) u(x, 0 ) = 1, x > 0,
                    2) u(0, t) = 0, t > 0,
                    3) lim u(x, t) = 1.
                        x→∞
               . . . . .
                .

                   Solution. Taking the Laplace transform of (5.17) yields


                                              2
                                            d U
                                                                   +
                                                  = sU − u(x, 0 ) = sU − 1.                           (5.18)
                                             dx 2
                   Transforming the boundary conditions 2) and 3) gives


                                                 U(0, s) = L(u(0, t)) = 0,

                                                                                             1
                                 lim U(x, s) = lim L(u(x, t)) = L( lim u(x, t)) = .
                                x→∞               x→∞                     x→∞                s
                   Now (5.18) is an ODE whose solution is given by

                                                            √            √      1
                                            U(x, s) = c e     sx  + c e − sx  + .
                                                                     2
                                                          1
                                                                                s
                   The boundary condition lim U(x, s) = 1/s implies c = 0, and U(0, s) = 0
                                                                                  1
                                                 x→∞
                   implies
                                                                       √
                                                                1     e  sx
                                                    U(x, s) =     −        .
                                                                s      s
                   By (4.27),
                                                                              √
                                                      (      )          ∫  x/2 t
                                                          x          2               2
                                     u(x, t) = erf       √      = √              e −u  du.
                                                        2 t           π   0
                   Direct calculation shows that u(x, t) indeed satisfies (5.17) and that the

               . . . .  initial and boundary conditions are satisfied.
                .



                   Example 5.21, Solve

                                                  2
                                                ∂ u      ∂u
                                                     =      , x > 0, t > 0,
                                                ∂x 2     ∂t

                   for
                               +
                    1) u(x, 0 ) = 0,
                    2) u(0, t) = f(t), t > 0,

                    3) lim u(x, t) = 0.
                        x→∞
               . . . . .


                                                              94
   90   91   92   93   94   95   96   97   98   99   100