Page 96 - 4811
P. 96

One-Dimensional Heat Equation


                   The transformed equation is


                                                        2
                                                       d U
                                                            − sU = 0,
                                                       dx 2
               whose solution is given by
                                                                      √
                                                     U(x, s) = c e   − sx
                                                                  2
               in view of condition 3). By 2),


                                                U(0, s) = L(f(t)) = F(s),


               so that c = F(s) and                                     √
                         2
                                                   U(x, s) = F(s)e    − sx  .

               Invoking Theorem 5 and the convolution theorem 2, we have

                                                    ∫
                                                       t    x
                                                                     2
                                         u(x, t) =        √      e −x /4τ f(t − τ)dτ.
                                                      0 2 πτ    3
                                                     2
                                              2
               Making the substitution σ = x /4τ, we find that
                                                        ∫             (           )
                                                    2     ∞        2          x 2
                                       u(x, t) = √             e −σ  f   t −        dσ,
                                                            √
                                                     π   x/2 t               4σ 2
                .
               which is the desired solution.

                   Example 5.22, Solve

                                               2
                                              ∂ u     ∂u
                                                   =      , 0 < x < l, t > 0,
                                              ∂x 2     ∂t

                   for
                               +
                    1) u(x, 0 ) = u ,
                                       0
                    2)   ∂  u(0, t) = 0 (i.e., left end insulated),
                         ∂x
                    3) u(l, t) = u .
                                     1
               . . . . .
                .
                   Solution. Taking the Laplace transform gives

                                                        2
                                                      d U
                                                            = sU − u .
                                                                       0
                                                      dx 2
                   Then
                                                             √                √    u 0
                                        U(x, s) = c cosh sx + c sinh sx               ,
                                                      1
                                                                       2
                                                                                    s
                   and by 2), c = 0, so that
                                 2
                                                                    √        u 0
                                               U(x, s) = c cosh       sx +      .
                                                            1
               . . . .                                                       s

                                                              95
   91   92   93   94   95   96   97   98   99   100   101