Page 100 - 4811
P. 100

One-Dimensional Wave Equation
                .


                                +
                    2. y (x, 0 ) = 0, x > 0,
                          t
                    3. y(0, t) = f(t) (f(0) = 0),
                    4. lim y(x, t) = 0.
                        x→∞
               . . . . .
                .
                   Solution. The transformed equation becomes

                                                                                      2
                                                                  ∂                  d Y
                                      2                    +               +       2
                                     s Y (x, s) − sy(x, 0 ) −        y(x, 0 ) = a         ,
                                                                  ∂t                 dx 2
                   that is,
                                                       2
                                                      d Y      s 2
                                                           −     Y = 0.
                                                      dx 2     a 2
                   Solving,

                                             Y (x, s) = c e  (s/a)x  + c e −(s/a)x .
                                                           1
                                                                        2
                   Since y(x, t) → 0 as x → ∞, then c = 0 and
                                                              1
                                                    Y (x, s) = c e  −(s/a)x .
                                                                 2

                   By condition 3), Y (0, s) = L(f(t)) = F(s), so that c = F(s), and
                                                                                   2

                                                  Y (x, s) = F(s)e   −(s/a)x .


                   Inverting via the second translation theorem (2) gives
                                                                    (       )
                                                                          x
                                                y(x, t) = u x (t)f t −        ,
                                                             a            a
                   or
                                                          {
                                                                   x
                                                                               x
                                                            f(t − ),     t ≥ ,
                                              y(x, t) =            a           a
                                                                               x
                                                            0,           t < .
                                                                               a
                   Thus, the string remains at rest until the time t = x/a, after which it
               . . . .  exhibits the same motion as the end at x = 0, with a time delay of x/a.
                .

                   Example 5.25, Solve


                                                       2
                                               2
                                             ∂ y      ∂ y
                                                   =      , 0 < x < l, t > 0,
                                              ∂t 2    ∂x 2
                   for

                    1. y(0, t) = 0, t > 0,
                    2. y(l, t) = a, t > 0,
                               +
                    3. y(x, 0 ) = 0, 0 < x < l,
                                +
                    4. y (x, 0 ) = 0, 0 < x < l.
                          t
               . . . . .

                                                              99
   95   96   97   98   99   100   101   102   103   104   105