Page 11 - 4560
P. 11

M y     M z           
                                          y A
                                z  A           ;
                          p max                    p 
                                 J
                                   z     J y          
                                                       (1.9)
                                M y     M z           
                                           y B
                                 z  B          .
                          c max                     c 
                                  J
                                   z      J  y        
          If       , just add one of the conditions (1.9), corresponding
                    
             
                p      c
          to a larger absolute value of tension.
          Returning to the example (fig. 1.3) and find the beam deflection
          in any section. Let deflection in the direction of the main axis  y

























                                    Figure 1.5

          through  w   and  deflection  in  the  direction  of  the  main  axis  z
          through  .
          We write the differential equation in the plane deflections  xz  and
           xy  as
                                                2
                                 2
                               d              d w
                           EJ        M  ; EJ        M  .
                              y   2     y    z   2      z
                               dx              dx
                                         11
   6   7   8   9   10   11   12   13   14   15   16