Page 12 - 4560
P. 12

Full  deflection  f  of  arbitrary  cross  section  is  defined  as  the
          geometric sum  and  w troughs (fig. 1.6):
                                               2
                                          2
                                   f      w .
          As an example, we calculate the deflection of the free end of the
          beam:
                      – deflection of the force  P
                                           y
                     2
                   d w                     P l 3    Pl 3  cos
                                            y
               EJ         P x   w   l               ;      (1.10)
                  z   2     y
                   dx                     3EJ         3EJ
                                              z          z
                 – deflection of the force  P
                                          z
                     2
                    d                     Pl 3     Pl 3  sin
               EJ         P x      l    z          ;      (1.11)
                  y   2     z
                    dx                    3EJ        3EJ
                                              y          y
                 –  full deflection (fig. 1.6)

                             f   w 2    l   2    l .         (1.12)
                 Find  the  tangent  of  the  angle  between  full  deflection
           f and the axis  y

                                   l  J
                          tg         z  tg   tg .   (1.13)
                                w   l  J
                                        y

























                                         12
   7   8   9   10   11   12   13   14   15   16   17