Page 71 - 4549
P. 71
Lets y (x ) 0 – the known partial decision of equation
1
(4.3). We will find second decision of this equation linear
independent with y (x ). We go out from Ostrogradsky -
1
Liouville formula (4.8). We will write down this formula in the
unfolded kind :
1 p dx
y y y y Ce .
2 1 2 1
2
Dividing by y all terms we have:
1
y y y y C 1 p dx
2 1 2 e ,
y 2 y 2
1 1
that is
y C 1 p dx
2
2 e ; (4.15)
y 1 y 1
from here, integrating, we find:
1 1 p dx
y Cy 1 e dx C . (4.16)
2 2 1
y 1
As we are interested by the partial decision, laying down
0
C 1 , C , have:
1
1 1 p dx
y y 1 e dx .
2 2
y
1
y
As follows from (4.15) 2 0 y 2 const .
y 1 y 1
That is y and y – linearly independent.
2 1
Then general decision will be written down
a ( x) dx
e 1
y( x) C y ( x) C y ( x) dx . (4.17)
1 1 2 1 2
y ( x)
1
69