Page 71 - 4549
P. 71

  Lets  y  (x )   0  – the known partial decision of equation
                                              1
                                 (4.3).  We  will  find  second  decision  of  this  equation  linear
                                 independent  with  y  (x ).  We  go  out  from  Ostrogradsky  -
                                                     1
                                 Liouville formula (4.8). We will write down this formula in the
                                 unfolded kind :
                                                         1 p dx
                                       y y     y y   Ce  .
                                       2 1    2 1

                                                   2
                                     Dividing by  y  all terms we have:
                                                   1
                                       y y     y y  C     1 p dx
                                         2 1   2      e       ,
                                           y 2       y 2
                                            1         1
                                  that is
                                          
                                       y    C      1 p dx
                                        2
                                             2  e    ;                                                      (4.15)
                                       y 1   y 1

                                 from here, integrating, we find:

                                                   1     1 p dx
                                           y   Cy 1  e   dx C  .                                     (4.16)
                                          2         2            1
                                                  y 1

                                     As we are interested by the partial decision, laying  down
                                              0
                                 C   1 , C  , have:
                                           1
                                               1     1 p dx
                                      y   y 1  e     dx .
                                       2        2
                                              y
                                               1
                                                                y                
                                     As follows from (4.15)       2      0       y 2    const .
                                                                                       
                                                                y 1       y 1     
                                                                     
                                     That is   y   and   y  –  linearly independent.
                                              2        1
                                     Then general decision will be written down
                                                                     a (  x)  dx
                                                                  e   1
                                       y( x)   C   y ( x)   C   y ( x)    dx  .             (4.17)
                                              1  1       2  1       2
                                                                    y ( x)
                                                                     1
                                                               69
   66   67   68   69   70   71   72   73   74   75   76