Page 41 - 4549
P. 41

du  y  2  3
                                         e    y  ,
                                      dy
                                                2
                                               y
                                            3 
                                      du   y  e  dy ,
                                                2     1  2  y 2  2  1    y 2  2
                                               y
                                            3 
                                     u     y  e  dy   y  e  dy     e   1 y   C  .
                                                      2              2
                                     The last result was got integration by parts.
                                     Consequently, we have
                                                1   y 2   2      y  2
                                      x   uv      e  1 y    C  e
                                                2               
                                     or

                                      x   Ce y  2    1  1 y  2  . 
                                                2


                                     2.5 Bernoulli Equation

                                     Equation of kind is named Bernoulli equation

                                      y    P    Qyx   yx  n  , n    , 0 n    1.                                (2.36)

                                     If  n    0,  we  will  have  the  considered  linear  equation
                                 already,  and  if  n    1,  will  get  equation  with  the  separated
                                 variables.
                                     It is easily to show that replacement  z   y 1   n   allows to take
                                 equation (2.36) to linear one, however more expediently will at
                                 once do replacement Bernoulli   y   uv ,   y   u v   v u   like till
                                                                          
                                 we do it in linear equation.

                                     Example 2.12  To untie equation  yx    4  y   x  2  y .





                                                               39
   36   37   38   39   40   41   42   43   44   45   46