Page 40 - 4549
P. 40

   We will write down equation in a kind:
                                              1
                                       
                                      y           .
                                          2xy   y 3

                                     This equation is not linear, but, if to change the roles of the
                                 sought function  after and argument, we will get equation linear
                                 relatively unknown function    yx   and its derivative:
                                                 3
                                      x    2yx   y .
                                     We     will   untie   him   by   a   method    Bernoulli:
                                           
                                 x   uv,  x   u v   v u     .   We   consider   here,   that
                                 u   u   y ,  v   v   y .
                                     Then
                                     u v   v u    2uvy   y 3 ,


                                     u v   u v    2vy   y 3 .

                                                 2vyv   ,0
                                     We have   
                                               u v   y  3 .

                                     We decide the first equation of the system:
                                      dv
                                           2ydy ,
                                      v
                                             2
                                     lnv   y   lnC  ,
                                             2
                                            y
                                     v   Ce  .
                                     We will put the got function v   v  y  in the second equation
                                 of the system:




                                                               38
   35   36   37   38   39   40   41   42   43   44   45