Page 39 - 4549
P. 39

   P  dxx    P  dxx
                                      y   e     ( Q  ex    dx   C ) .
                                                  

                                     It  is  the  same  formula  (2.30),  to  which  came  earlier  a
                                 method Lagrange.

                                     Example 2.10 To find the common decision of equation
                                       y x    3y   x 2 .
                                                                                 3
                                        We will write down equation in a kind  y    y   . x
                                                                                 x
                                                                          
                                     We  will  enter  substitution  y   uv ,  y   u v   v u   and  put
                                  y and  y  in given LNDE:
                                                                 3uv
                                                      u v   v u      , x
                                                                  x
                                                3 v 
                                     u v   u v        x .    (*)
                                                x 
                                                                      3v
                                                                                             3
                                     Farther we  will untie LHDE   v      , 0  obsessed  v   x
                                                                       x
                                                                              dx
                                                                 3
                                 and put this function in (*):   u x   x or  du   , from where
                                                                              x 2
                                       1
                                 u       C  . Now we will write down the common decision  of
                                       x
                                                           1                 3     2
                                                         3
                                 the given Equation:  y   x     C   or  y   Cx   x .
                                                           x      

                                     Note 2.3 If known two upshots parts  y  and  y  LNDE first
                                                                          1      2
                                 order, his common decision is written down without squares in a
                                 kind  y   C y   y   y
                                              1   2    1
                                     .

                                     Example 2.11 To find the common decision of equation
                                     2xy   y 3 dy   dx    0.

                                                               37
   34   35   36   37   38   39   40   41   42   43   44