Page 29 - 4549
P. 29

homogeneous  equation  of  kind  (4.1).  We  will  do  replacement
                                     y                          dy   du
                                 u    ,   from where  y   ux,        x   u , and get equation
                                     x                          dx   dx
                                                               du
                                 with  the  separated  variables   x   u    u  2   u   1.  We  will
                                                               dx
                                 separate     variables     and      let     us      integrate:
                                     du      dx         du       dx     1
                                              ,              ,          ln x   lnC  .
                                    1u   2  x       1u   2  x    1u  
                                                              y
                                      Now  we  will  put  u      and  write  down  a  general
                                                              x
                                           x
                                 integral        ln  Cx  . If to untie this equality relatively y , we
                                          x   y
                                                                    x
                                 will get the common decision:  y        . x .
                                                                  lnCx
                                     Example      2.5    To    untie   differential   equation
                                             2
                                   y x   y   y   x  2  .
                                    

                                        We  will  write  down  equation  in  a  kind
                                              2
                                  dy   y    y   x 2    dy   y     y   2
                                                  or                . 1   We  see  that  it  is
                                  dx   x       x        dx   x     x  
                                 homogeneous  equation  of  kind  (3.1).  We  will  do  replacement
                                     y                         dy    du
                                 u    ,  from where  y   ux,         x   u , and get equation
                                     x                         dx    dx
                                                               du
                                 with  the  separated  variables   x   u   u   u  2    . 1   We  will
                                                               dx
                                 separate     variables     and      let     us      integrate:
                                    du     dx         du       dx            2
                                                                                             ,
                                            ,                ,  ln u   u  1   ln x   ln C
                                   u  2  1  x       u  2  1  x




                                                               27
   24   25   26   27   28   29   30   31   32   33   34