Page 29 - 4549
P. 29
homogeneous equation of kind (4.1). We will do replacement
y dy du
u , from where y ux, x u , and get equation
x dx dx
du
with the separated variables x u u 2 u 1. We will
dx
separate variables and let us integrate:
du dx du dx 1
, , ln x lnC .
1u 2 x 1u 2 x 1u
y
Now we will put u and write down a general
x
x
integral ln Cx . If to untie this equality relatively y , we
x y
x
will get the common decision: y . x .
lnCx
Example 2.5 To untie differential equation
2
y x y y x 2 .
We will write down equation in a kind
2
dy y y x 2 dy y y 2
or . 1 We see that it is
dx x x dx x x
homogeneous equation of kind (3.1). We will do replacement
y dy du
u , from where y ux, x u , and get equation
x dx dx
du
with the separated variables x u u u 2 . 1 We will
dx
separate variables and let us integrate:
du dx du dx 2
,
, , ln u u 1 ln x ln C
u 2 1 x u 2 1 x
27