Page 25 - 4549
P. 25
2
2xy x 2 y 3 x x 3 y 2 2 2
2x 3x y .
y x
We find a function yxu , after a formula (2.3),
considering x ; 0 y 0 :
0 0
x y 1 x x 3 y 3
3
2
u 2xy x 2 y 3 dx 0 0 y 2 dy x 2 y x 3 y 3 x 2 y .
0 0 3 0 3
Writing down a general integral in a kind (2.9) let as
multiply expression by number 3 for the receipt of more
3
comfortable form: 3x 2 y x 3 y . С
Example 2.3 To find the general integral of equation
xy 2 y dx xdy 0.
2
We have yxP , xy y; Q yx, x . We will find
P Q P Q
derivative parts: 2xy ; 1 1 . As , the
y x y x
given equation is not equation in complete differentials. We
will consider expression
1 Q P 1 2 xy 1 2 xy 1 2
.
2
P x y xy y y xy 1 y
We see that the second case and integrating cofactor which
depends on a variable only takes place, it is possible to find
from equation of kind (2.13). It will be in this case,
d ln 2
from where consistently:
dy y
2dy dy 1
d ln ; d ln 2 ; ln ln2 ; y
y y y 2
23