Page 25 - 4549
P. 25

2
                                       2xy   x 2  y 3    x   x 3  y 2   2  2
                                                                   2x   3x  y .
                                            y             x 

                                     We  find  a  function   yxu ,    after  a  formula  (2.3),
                                 considering   x    ; 0  y    0 :
                                               0       0
                                     x               y                    1     x        x 3  y 3
                                                           3
                                                       2
                                 u    2xy   x  2  y  3 dx   0   0   y  2  dy   x  2 y   x  3  y  3    x  2  y   .
                                     0               0                    3     0         3

                                     Writing  down  a  general  integral  in  a  kind  (2.9)  let  as
                                 multiply  expression  by  number  3  for  the  receipt  of  more
                                                              3
                                 comfortable form:  3x  2  y   x  3  y   . С 

                                     Example  2.3  To  find  the  general  integral  of  equation
                                 xy 2   y dx   xdy    0.

                                                             2
                                      We have    yxP ,     xy   y;  Q  yx,     x . We will find
                                                  P             Q              P    Q
                                 derivative  parts:     2xy    ; 1     1  .  As     ,  the
                                                  y             x              y    x 
                                 given  equation  is  not  equation  in  complete  differentials.    We
                                 will consider expression
                                      1   Q   P    1  2 xy 1    2 xy 1    2
                                                                            .
                                                         2
                                      P     x   y     xy   y  y xy 1    y
                                                 

                                     We see that the second case and integrating cofactor which
                                 depends  on  a  variable  only  takes  place,  it  is  possible  to  find
                                 from  equation  of  kind  (2.13).  It  will  be  in  this  case,
                                  d ln     2
                                             from where consistently:
                                   dy       y
                                          2dy                 dy                        1
                                 d  ln       ;    d  ln     2   ;  ln     ln2  ; y   
                                            y                   y                       y 2



                                                               23
   20   21   22   23   24   25   26   27   28   29   30