Page 33 - 4549
P. 33

 a  x   b  y   c  
                                             y     f    1  1  1                                             (2.19)
                                                              
                                                 a 2 x   b 2  y   c 2  
                                 where
                                                a 1  b 1
                                                       0                                                  (2.24)
                                                a   b
                                                 2   2

                                         a    b
                                 that  is   1    1    k   .  In  this  case  the  equation  (2.19)  can  be
                                         a    b
                                          2    2
                                                   dy      a  x   b  y   c  
                                 written  down  as      f   1   1     1      f   xa    b  y    c .
                                                   dx      k  xa 1    b 1  y  c  2    1  1  1
                                                         
                                                                          
                                 Such  equation  is  taken  not  to  homogeneous,  and  at  once  to
                                 equation  with  the  separated  variables  by  substitution
                                 t   a  x   b  y , as it was considered earlier.
                                      1    1

                                     Example 2.8 To find the common decision of equation

                                   yx     1 dx    2 x  2 y   1 dy    . 0

                                     We     will   write   down     equation   in   a   kind
                                  dy      x   y    1
                                                 . will   Do x   y   t    substitution,   then
                                  dx       2 x   y  1
                                     dy   dt
                                 1        , and the given equation will be written  down in a
                                     dx   dx
                                        dt     t    1
                                 kind               . 1
                                       dx     2 t  1
                                                                 2 t 1
                                     We  separate  variables          dt   dx   and  integrate
                                                                 t  2
                                         2t  1
                                   dx      dt .
                                         t   2

                                       We will find more difficult integral separately:
                                                               31
   28   29   30   31   32   33   34   35   36   37   38