Page 30 - 4549
P. 30

y
                                                    2
                                     Finally  u   u 1    Cx .  Now  we  will  put  u   and
                                                                                      x
                                                                         y    y 2
                                 write  down  a  general  integral:             1    Cx   or
                                                                        x     x  2
                                                   2
                                        2
                                             2
                                  y   y   x   Cx  .   

                                     Note 2.1  If equation of kind   , yxP  dx   Q  , yx  dy    0

                                 it  is  simultaneously  and  homogeneous  and  in  complete
                                 differentials, a general integral can be found as

                                     .                 Px   Qy   C  .                                                                  (2.18)

                                     Example      2.6    To    untie   differential   equation
                                 x 2   y  2  dx    2xy   y 2  dy    . 0

                                                           2
                                                                                    2
                                       Here are   , yxP     x   y 2 ; Q  , yx     2xy   y . We will
                                 check  that  the  condition  of  complete  differential  is  executed.
                                 Indeed
                                         2
                                       x   y 2     xy2    y 2 
                                                               2  y .
                                           y          x 

                                     At  the  same  time  functions   yxP ,    and   yxQ ,    are
                                 homogeneous of the 2-th measuring, that is the given equation is
                                 homogeneous. After a formula (1.33)  we write down a general
                                 integral:
                                                2
                                              x   y  2   2xyx     y  2  y   . С 


                                     2.3.1 Equations That Are Taken to Homogeneous

                                     Before  homogeneous  equation  the  equations  of  kind  are
                                 erected

                                                               28
   25   26   27   28   29   30   31   32   33   34   35