Page 24 - 4549
P. 24

 P   Q
                                                        
                                             d ln     y   x 
                                     .                       .                                           (2.14)
                                               dx       Q

                                     Example  2.2  To  Find  an  general  integral  of  equation
                                 2  xyy  3  dx      xx  2  y 2  dy    0 .

                                                                                      2
                                      We  have     , yxP     2y   xy 3  ; Q  , yx     x   x 2  y   .  We
                                                             P              Q
                                                                                        2
                                 will  find  derivative  parts:     2   3xy 2 ;   1  2xy .  As
                                                             y               x 
                                   P   Q
                                          ,  given  equation  not  in  complete  differentials.    We
                                   y    x 
                                 will consider expression
                                                            2
                                      1   P   Q   2   3 xy  1  2 xy 2  1  xy 2  1
                                                                                 .
                                      Q    y   x      x   x  2  y  2   x 1  xy  2   x
                                        

                                     We  see  that  the  first  case  and  integrating  cofactor  which
                                 depends on a variable  x  only takes place, it is possible to find
                                                                                   d ln   1
                                 from equation of kind (2.12). It will be in this case      ,
                                                                                    dx     x
                                 from where consistently:
                                              dx              dx
                                      d ln      ;   d ln        ;  ln     ln  x;     x .
                                              x                x

                                     We  will  increase  the  given  equation  on  the  found
                                 integrating cofactor:

                                       2xy   x 2  y 3  dx    x 2   x 3  y 2  dy    0 .

                                     We  will  make  sure,  that  the  condition  of  complete
                                 differential is now executed. Indeed


                                                               22
   19   20   21   22   23   24   25   26   27   28   29