Page 7 - 4498
P. 7

k
                                                              N  i A I

                                                 A av       A   lim   i 1  k                                        (1.2.1)
                                                      N  
                                                               N i
                                                               i 1
               The total number of accidental values is defined by and the probability
               P(A) of appearance of the accidental event A (in this case — observation

               of the certain meaning of the accidental value A) is defined by relation:

                                                               n
                                                         P( A  lim)                                            (1.2.2)
                                                         N    N
            where n is the number of observations for the value A among the big total
            number of observations N. Then


                                   k
                                     N  i A I               k
                                                           
                  A av       A   lim   i 1   lim     A i = lim  N i  A i       P( A ) A i     (1.2.3)
                                                                     
                                                                              
                                                           
                                                   
                                                                                          i
                             N     k         N                     N     
                                      N i                    i 1
                                      i 1
               Hence, the average statistical meaning of the discrete accidental value
            A is given by
                                                            k
                                                       A av       A      P( A )  A                                   (1.2.4)
                                                                        i
                                                                   i
                                                             i 1

             and of the continuous accidental value A:
                                                    b
                                                                   b
                                                      A av   A  dP(  A)      A   f ( A)   dA                      (1.2.5)
                                                    
                                                    a              a
            where f(A) = dP(A)/dA is the density of the probability (or the differential

            law of distribution of an accidental value).

                                             1.3. Basic Physical Values


                The state of a given substance is characterized with the help of physical
             values  called  parameters  of  state:  pressure,  specific  volume,  molecular
             mass, temperature etc.

                a) The pressure p is the normal component of force, acting on the unit
                      area of a surface:

                                                              F n    dF n
                                                             p  lim                                     (1.3.1)
                                                         S0   S    dS




                                                            7
   2   3   4   5   6   7   8   9   10   11   12