Page 25 - 4263
P. 25

Projections of a vector onto the coordinate axis



                  Theorem 4.2.
                                                              −→
                  The projection of a sum of two vectors a and b on axis l equals to the sum of projections of
                                                       −→
                  these vectors on the same axis.                                                      ⋆


                                           −→     −→    −−→
                   PROOF. Let’s consider AC = AB +BC ( fig. 4.9), x 1 , x 2 , x 3 — coordinates of projections A l ,
                                                       −→                 −−→               −→
                   B l ,C l onaxisl pointsA,B,C.Thenpr−→AB = x 2 −x 1 ;pr−→BC = x 3 −x 2 ;pr−→AC = x 3 −x 1 .
                                                      l                  l                 l
                                                                 −→         −→        −−→
                      But x 3 − x 1 = (x 2 − x 1 ) + (x 3 − x 2 ), so pr−→AC = pr−→AB + pr−→BC.          2
                                                                l          l         l
                     This theorem spreads up to any amount of elements.


                                                                   B




                                                                        C
                                                     A

                                                  O . . . . . . . . .      l
                                                     A 1        B 1   C 1
                                               Figure 4.9 – Projection of a sum




                  Theorem 4.3.
                  On multiplying vector projection a into any digit λ, its projection on axis l multiplies into that
                                                −→
                                 −→
                                                   −→
                  digit: pr−→(λ · a ) = |λ| · pr−→ a .
                           l                     l

                                                           −→
                                                                 −→
                   PROOF. Let’s note, when λ > 0, then λ a ⇈ a , i.e. forms the same angle with axis l; when
                               −→
                                     −→
                   λ < 0, then λ a ↑↓ a , i.e. forms with axisl angle π − φ. Using theorem 4.5, we will get:
                                                                                                    −→
                                                                  −→
                                                                                 −→
                                      − →
                                                −→
                      λ > 0 : pr−→(λ · a ) = |λ · a | · cos φ = |λ| · | a | cos φ = λ · | a | cos φ = λ · pr−→ a ,
                                l                                                                  l
                                                                               −→
                                                       −→
                                             −→
                             λ < 0 : pr−→(λ · a ) = |λ · a | · cos(π − φ) = |λ| · | a | cos(π − φ) =
                                        l
                                                                 −→
                                             −→
                                                                                      −→
                                    = −λ · | a | · (− cos φ) = λ · | a | · cos φ = λ · pr−→ a .          2
                                                                                    l
                  Remark 4.1. The projection of a subtraction of two vectors on axis l equals to
                  the subtraction of projections these vectors on the same axis.                         
                       4.5. Projections of a vector onto the coordinate axis


                                                                                                  −→
                 Let’s consider a rectangular system of coordinates Oxyz and an arbitrary vector AB, X =
                     −→           −→            −→
                 pr x AB, Y = pr y AB, Z = pr z AB. These projections on coordinate axis are called as coordi-
                                −→                        −→
                 nates of vector AB. It can be denoted by: AB = (X; Y ; Z).



                                                              25
   20   21   22   23   24   25   26   27   28   29   30