Page 24 - 6637
P. 24

Solved Problems


                (b) For x < 0, the equation is hyperbolic. We find the new independent variables.

                                    dy     √               2 √                     2 √
                                        =     −x,     y = x −x + c,          ξ = x −x − y
                                    dx                     3                       3
                                  dy       √                 2 √                     2 √
                                      = − −x,        y = − x −x + c,           ψ = x −x + y
                                  dx                         3                       3
                     Next we determine x and y in terms of ξ and ψ.


                                                                  1/3
                                                       3                         ψ − ξ
                                             x = −       (ξ + ψ)        ,   y =
                                                       4                            2

                     We calculate the derivatives of ξ and ψ.

                                                √           3          1/6
                                          ξ =      −x =       (ξ + ψ)        ,   ξ = −1
                                           x
                                                                                  y
                                                             4
                                                                    1/6
                                                         3
                                                ψ =        (ξ + ψ)       ,   ψ = 1
                                                                               y
                                                 x
                                                         4
                     Then we calculate the derivatives of φ.

                                                                    1/6
                                                         3
                                                φ =        (ξ + ψ)       (φ + φ )
                                                                                  ψ
                                                                            ξ
                                                  x
                                                         4
                                                         φ = −φ + φ       ψ
                                                           y
                                                                    ξ
                                          1/3
                               3
                     φ xx  =     (ξ + ψ)        (φ + φ ) + (6(ξ + ψ))         1/3 φ ξψ  + (6(ξ + ψ)) −2/3  (φ + φ )
                                                  ξξ
                                                                                                             ξ
                                                                                                                   ψ
                                                          ψψ
                               4
                                                    φ yy  = φ − 2φ    ξψ  + φ ψψ
                                                              ξξ
                     Finally we transform the equation to canonical form.
                                                         φ xx  + xφ yy  = 0
                          (6(ξ + ψ))   1/3 φ ξψ  + (6(ξ + ψ)) 1/3 φ ξψ  + (6(ξ + ψ)) −2/3  (φ + φ ) = 0
                                                                                                   ψ
                                                                                             ξ
                                                                   φ + φ   ψ
                                                                     ξ
                                                       φ ξψ  = −
                                                                  12(ξ + ψ)

                     For x > 0, the equation is elliptic. The variables we defined before are complex-

                     valued.
                                                     2                     2
                                               ξ = i x  3/2  − y,   ψ = i x   3/2  + y
                                                     3                     3
                     We choose the new real-valued variables.


                                                 α = ξ − ψ,       β = −i(ξ + ψ)

                     We write the derivatives in terms of α and β.


                                                          φ = φ − iφ      β
                                                            ξ
                                                                  α
                                                              20
   19   20   21   22   23   24   25   26   27   28   29