Page 22 - 6637
P. 22

Solved Problems


                                   2
                          (1 + y) (u   σσ  + u ) − (1 + y) cos(x)u − (1 + y) sin(x)u = 0
                                                                        σ
                                                                                              τ
                                               ττ
                                           2
                                          σ + τ  2   (u σσ  + u ) − σu − τu = 0
                                                                                 τ
                                                              ττ
                                                                         σ
                                                                 σu + τu    τ
                                                                    σ
                                                  u σσ  + u ττ  =
                                                                    2
                                                                   σ + τ   2

               Exercise 66. Classify as hyperbolic, parabolic, or elliptic in a region R each of
               the equations:


                 (a) u = (pu )
                                x x
                       t
                             2
                (b) u = c u     xx  − γu
                       tt
                 (c) (qu ) + (qu ) = 0
                         x x
                                    t t
               where p(x), c(x, t), q(x, t), and γ(x) are given functions that take on only positive

               values in a region R of the (x, t) plane.
               Solution:


                 (a)

                                                            u = (pu )
                                                                      x x
                                                             t
                                              pu xx  + 0u + 0u + p u − u = 0
                                                         xt
                                                                        x x
                                                                  tt
                                                                                 t
                              2
                     Since 0 − p0 = 0, the equation is parabolic.
                (b)

                                                                 2
                                                         u = c u   xx  − γu
                                                          tt
                                                                  2
                                                  u + 0u − c u       xx  + γu = 0
                                                            tx
                                                    tt
                              2
                                          2
                     Since 0 − (1)(−c ) > 0, the equation is hyperbolic.
                 (c)

                                                       (qu ) + (qu ) = 0
                                                           x x
                                                                      t t
                                             qu xx  + 0u + qu + q u + q u = 0
                                                                                t t
                                                                       x x
                                                         xt
                                                                 tt
                              2
                     Since 0 − qq < 0, the equation is elliptic.



               Exercise 67. Transform each of the following equations for φ(x, y) into canonical
               form in appropriate regions

                                                    2
                              2
                 (a) φ xx  − y φ + φ − φ + x = 0
                                 yy
                                        x
                                                              18
   17   18   19   20   21   22   23   24   25   26   27