Page 23 - 6637
P. 23

Solved Problems


                (b) φ  xx  + xφ yy  = 0

               The equation in part (b) is known as Tricomi’s equation and is a model for transonic

               fluid flow in which the flow speed changes from supersonic to subsonic.
               Solution:

                 (a) For y 6= 0, the equation is hyperbolic. We find the new independent variables.

                                           p
                                    dy        y 2                 x      −x                  −x
                                        =        = y,     y = c e ,    e    y = c,     ξ = e    y
                                    dx       1
                                            p
                                  dy     − y    2
                                                                             x
                                                                                                x
                                                                     −x
                                      =           = −y,      y = c e ,      e y = c,     ψ = e y
                                  dx        1
                     Next we determine x and y in terms of ξ and ψ.
                                                              2
                                                      ξψ = y ,      y =  p  ξψ

                                                                                 1        ψ
                                                           x
                                                p
                                                                p
                                       ψ = e  x   ξψ,     e =      ψ/ξ,     x =    log
                                                                                 2        ξ
                     We calculate the derivatives of ξ and ψ.
                                                       ξ = − e    −x  y = −ξ
                                                         x
                                                        ξ = e  −x  =  p  ξ/ψ
                                                         y
                                                                  x
                                                          ψ = e y = ψ
                                                            x
                                                                x
                                                        ψ = e =      p  ψ/ξ
                                                          y
                     Then we calculate the derivatives of φ.
                                                                         s            s
                                       ∂          ∂        ∂       ∂         ξ ∂         ψ ∂
                                           = −ξ      + ψ      ,       =            +
                                      ∂x         ∂ξ       ∂ψ      ∂y         ψ ∂ξ        ξ ∂ψ
                                                                         s          s
                                                                            ξ          ψ
                                        φ = −ξφ + ψφ ,            φ =         φ +        φ ψ
                                                             ψ
                                          x
                                                                    y
                                                    ξ
                                                                                ξ
                                                                            ψ           ξ
                                                                                       ξ                 ψ
                              2
                                                     2
                     φ xx  = ξ φ − 2ξψφ      ξψ  + ψ φ  ψψ  + ξφ + ψφ ,        φ yy  =   φ + 2φ    ξψ  +   φ ψψ
                                                                 ξ
                                                                                          ξξ
                                                                         ψ
                                 ξξ
                                                                                       ψ                 ξ
                     Finally we transform the equation to canonical form.
                                                                               2
                                                         2
                                                φ xx  − y φ + φ − φ + x = 0
                                                                   x
                                                            yy

                                                                                           ψ
                                 −4ξψφ   ξψ  + ξφ + ψφ − ξφ + ψφ − φ + log                      = 0
                                                          ψ
                                                  ξ
                                                                  ξ
                                                                          ψ
                                                                                           ξ

                                                           1                   ψ
                                                  φ ξψ  =    φ + φ − log
                                                              ψ
                                                          2ξ                   ξ
                     For y = 0 we have the ordinary differential equation
                                                                         2
                                                     φ xx  + φ − φ + x = 0.
                                                              x
                                                              19
   18   19   20   21   22   23   24   25   26   27   28