Page 26 - 4849
P. 26

У частковому випадку, коли емпірична функція являє собою
                   поліном


                   то


                          Звідси маємо




                   і




                           Отже, нормальна система буде мати вигляд








                                                                                                 (5.9)
                           Метод  найменших  квадратів  має  перевагу  в  тому,  що  якщо
                    сума  квадратів  відхилень  мала,  то  самі  відхилення  також  малі  за
                    абсолютною  величиною.  Для  методу  середніх,  де  вираховується
                    алгебраїчна сума, цього сказати не можна.
                           Недоліком  методу  найменших  квадратів  є  громіздкість
                    обчислень.  Тому  йoгo  використовують  для  обробки  спостережень
                    високої  точності,  коли  потрібно  отримати  також  досить  точні
                    значення параметрів.

                           Приклад, наведена наступна таблиця
                      t     14,5    30,0    64,5    74,5    86,7     94,5    98,9
                      k      0     0,004    0,018   0,029   0,051   0,073   0,090

                   дає  значення  питомої  електропровідності  k  скла  залежно  від
                   температури t в градусах С.

                          Підібрати емпіричну формулу для функції k              f  (t ).
                          Р о з в ' я з о к .   Точки  М (t ,  lgk )  (і  =  1,  2,...,  7),  за
                                                                     i
                                                           i
                                                              i
                   виключенням першої, приблизно розміщені на прямій лінії (рис. 5.1).
                          Тому  вибираємо  емпіричну  формулу  у  вигляді  показникової
                    функції





                                                           26
   21   22   23   24   25   26   27   28   29   30   31