Page 59 - 4749
P. 59

2
                    p  sin   p  cos    cos sin     sin  
                   t    x        y         x             yx

                              2
                           cos    sin cos .  
                         xy         y
             From this we obtain:
             - normal stress on an arbitrary plane
                        cos  2      sin  2     sin  2  ;   (3.12)
                          x          y         xy
             - tangential stress on an arbitrary plane
                               
                            x   y  sin  2    cos 2  .          (3.13)
                         t                   yx
                               2

           3.5.2  Finding  the  position  of  principal  planes  and  the
           value of principal stresses

             Find the position of principal planes on condition that on these
           planes tangential stresses equal to zero:
                              
                             x    y
                                   sin  2 0   yx  cos 2 0    0,
                               2
           hence
                                           2  yx
                             tg  2          .                     (3.14)
                                  0
                                          
                                         x    y
             From the equation (3.14) we find two values of the angle   ,
                                                                          0
           that  differ  from  each  other  at  90.  These  angles  determine  the
           position of principal planes. One value of the angle corresponds to
           the  plane  of  action  of  the  maximum  principal  stress,  and  the
           second - the minimum.
             To make sure whether really the angles   correspond to plane
                                                      0
           actions  of  the  maximum  and  the  minimum  normal  stresses  we
           should study the extreme expression (3.12):




                                          59
   54   55   56   57   58   59   60   61   62   63   64