Page 58 - 4749
P. 58

Figure 3.5                                 Figure 3.6


           3.5.1 Definition of normal and tangential stresses on an
           arbitrary plane

             Arbitrary  plane  divides  the  perpendicular  into  two  triangular
           prisms. Consider  the equilibrium of one of the prisms (fig. 3.6).
           Using the equilibrium equation (3.5), we obtain:
                                p    x l   yx  ; m
                                 
                                  x
                                                                    (3.11)
                                p    xy l   y  . m
                                 
                                  y
             Define the components of the stress    and   on the inclined
                                                          t
           plane, which position is determined by the direction cosines of the
           normal  .
                                                 
                     l  cos x   ,     cos  ;  m    cos y   ,     sin  .
                                                  
             We will project  p  and  p  on the axis   and t :
                               x      y 
                                                 2
                    p  cos   p  sin     cos    sin cos   
                       x          y       x         yx

                                             2
                            cos sin     sin  ;
                         xy              y
                                          58
   53   54   55   56   57   58   59   60   61   62   63