Page 111 - 4660
        P. 111
     Base concepts
                                          Table 2.4 – Oxygen and Hydrocarbon Levels
                 Number observation     Hydrocarbon Level x (%)    Purity y (%)
                          1                       0.99                 90.01
                          2                       1.02                 89.05
                          3                       1.15                 91.43
                          4                       1.29                 93.74
                          5                       1.46                 96.73
                        hline 6                   1.36                 94.45
                          7                       0.87                 87.59
                          8                       1.23                 91.77
                          9                       1.55                 99.42
                          10                      1.40                 93.65
                          11                      1.19                 93.54
                          12                      1.15                 92.52
                          13                      0.98                 90.56
                          14                      1.01                 89.54
                          15                      1.11                 89.85
                          16                      1.20                 90.39
                          17                      1.26                 93.25
                          18                      1.32                 93.41
                          19                      1.43                 94.98
                          20                      0.95                 87.33
                                                   ∑  n         ( ∑ n  x i)·( ∑ n  y i)
                                                                           i=1
                                                                   i=1
                                              ˆ
                                              β 1 =   i=1  y i x i −    n  2     ,                         (4.7)
                                                        ∑          ( ∑ n  x i)
                                                          n    2      i=1
                                                              x −
                                                          i=1  i       n
                                 ∑  n                    ∑  n
               where ¯y = (1/n)        y i and ¯x = (1/n)      xi. The fitted or estimated regression line is
                                    i=1                     i=1
               therefore
                                                             ˆ
                                                                   ˆ
                                                         ˆ y = β 0 + β 1 x.                                (4.8)
               Note that each pair of observations satisfies the relationship
                                                         ˆ
                                                    ˆ
                                              y i = β 0 + β 1 x i + e i , i = 1, 2, . . . , n
               where e i = y i − ˆy i is called the residual. The residual describes the error in the fit of the model to
               the i-th observation y i . Later in this chapter we will use the residuals to provide information about
               the adequacy of the fitted model.
                   Notationally, it is occasionally convenient to give special symbols to the numerator and
               denominator of Equation (4.7). Given data (x 1 , y 1 ), (x 2 , y 2 ), . . . , (x n , y n ), let
                                                  n               n        ∑ n    2 2
                                                 ∑               ∑        (     x )
                                                            2
                                                                      2
                                          S xx =    (x i − ¯x) =    x −      i=1  i                        (4.9)
                                                                      i
                                                 i=1             i=1           n
               and
                                          n                     n          ∑ n       ∑ n
                                        ∑                      ∑          (     x i ) (   y i )
                                  S xy =    (y i − ¯y)(x i − ¯x) =  x i y i −  i=1     i=1                (4.10)
                                                                                   n
                                         i=1                   i=1
                                                              111
     	
