Page 118 - 4560
P. 118

E                 1  
                                           
                          2  C 1  1    C  2  2     p 1 ,
                     1                  r 1 

                       E                 1  
                                           
                         2  C 1  1    C  2  2      p 2 ,
                     1                  r 2 
          from which we find

                                                 2 2
                               2
                        2
                 1   r p   r p         1   r r   p   p  
            C          1  1  2  2  ,  C       1  2  1  2  .     (9.14)
              1            2   2      2             2   2
                   E      r   r           E       r  r
                          2   1                     2   1
          Thus, the formula for the stresses and radial displacement finally
          takes the form
                                       2 2
                          2
                                2
                       r p   r p   r r   p   p   1
                    t    1  1   2  2   1  2  1   2
                                                   ,            (9.15)
                            2
                                           2
                   r     r   r 1 2    r   r 1 2  r  2
                            2
                                          2
                                              2 2
                              2
                        2
                 1   r p   r p     1   r r 2   p   p 2   1
                                                   1
                                             1
             u         1  1  2  2  r                  .       (9.16)
                          2
                                                 2
                  E      r   r  2      E       r   r  2  r
                          2   1                  2   1
          With the formula for    and    see that their sum - a constant,
                                 t       r
          i.e.
                                    const
                                t   r
          Therefore,  the  relative  linear  deformation  of  the  ring  in  the
          direction of the axis of the cylinder is a constant
                               
                                   const  .
                          x         t   r
                               E
          If  the  ends  of  the  cylinder  are  present  and  the  longitudinal
          strength  N is parallel to axis, in its cross-section stress appears
                                      N
                                           ,
                               x      2   2                         (9.17)
                                    r   r  
                                     2   1
                                        118
   113   114   115   116   117   118   119   120   121   122   123