Page 113 - 4560
P. 113

Imaginary element will be cut out with the size  dl  and  dl  (fig.
                                                            m       t
          9.1), by using two meridional and two normal adjacent sections.
          On the  faces of the element normal  stresses will operate:    -
                                                                      m
          longitudinal or meridional stress   - cross or circular tension.
                                            t
          Denote    the radius of curvature of the arc of the meridian, and
                    m
          after    - the radius of curvature of the normal section.
                 t
          Construct the equilibrium equation of the selected element shell.
          To do this, all the  forces  acting on  it, will  design the direction
          normal  n n  to the surface element
                                    d                d
              pdl  dl   2  dl  sin  m    2  dl  sin  t    0 .   (9.1)
                 m   t     m   m             t   t
                                      2                2
          Consider the smallness of the size of the item, we take:
                          d     d       d    d
                      sin    m    m  ; sin  t    t  ;              (9.2)
                           2      2        2      2

                                 dl         dl
                           d     t  ,  d   m  .                  (9.3)
                             m           t
                                            
                                   m          t
          Substituting the representation (9.2) and (9.3) in the equilibrium
          equation (9.1), we obtain
                                     dl         dl
                    pdl dl     dl  t     dl  m    0.          (9.4)
                       m  t   m    m       t   t
                                                
                                      m           t



















                                        113
   108   109   110   111   112   113   114   115   116   117   118