Page 117 - 4560
P. 117

du       u
                                    ,     .                     (9.10)
                                r        t
                                   dr       r
          The physical aspect of the problem is described by equations of
          Hooke's law, which, after substituting in them the values of the
          relative deformation (9.10) solve relatively stress   and  :
                                                            r      t
                     E    du    u          E    u    du  
                                ,                   .       (9.11)
               r       2             t       2          
                   1    dr    r        1    r    dr  
          Substituting  the  expressions  for  stresses  (9.11)  in  the  static
          equation (9.9), after transformations we get a differential equation
          with the unknown u

                             2
                           d u   1 du    u
                                           0.                    (9.12)
                            dr 2  r dr  r 2
          The  solution  of  this  second  order  differential  equation  with
          variable coefficients (Euler’s equation) has the form
                                        C
                               u   C r   2  .                     (9.13)
                                    1
                                         r
          Substituting the expression for  u  in equation (9.11) leads to the
          following expressions for stresses:

                             E                 1  
                                C  1    C      ,
                        r       2   1         2   2 
                           1                  r   

                             E                 1  
                                C  1    C      .
                        t       2   1         2   2 
                           1                  r   
          Steels integration  C  and  C  define the boundary conditions on
                              1       2
          the inner and outer contours of the ring
                                          r
                            r    p ,       p .
                                      
                          r  1     1    r  2      2
          These conditions give two equations:



                                        117
   112   113   114   115   116   117   118   119   120   121   122