Page 107 - 4560
P. 107

To determine the unknowns A , B ,  C  and  D , we use the
          boundary conditions when  x   (Figure 8.6)
                                        0
              y   0   y ;    0     ;    0M    M ;    0Q    Q .   (8.29)
                                                           0
                                               0
                                  0
                       0
                 According to formulas (8.26) and (8.27) when  x   we
                                                                    0
          obtain
                                         0
                  1
                             0
          K    0  ;  K    0  ;  K    0  ;  K    0  ;    0y *    0.
                                                    0
           1           2          3           4
                 Satisfying the boundary conditions (8.29), we obtain
          integrating constants
                                                      A   y 0 ;
                                                          
                                                      B   0  ;
                                                           
                                                    
                                                          M  0    (8.30)
                                                     C    2 EJ  ;
                                                             z
                                                          Q 0
         Figure 8.6                                  D   3    .
                                                          EJ  z

                 Taking into account the expressions (8.30) the correlations
          (8.25), (8.28) take the form
                                   M           Q
            y    x   y K   0  K   0  K      0  K   y * ( )x ;
                                                       4
                    0
                                           3
                       1
                               2
                                  2  EJ      3 EJ
                                        z           z
                                      M           Q         dy *    x
              x   4y  K    0 K   0  K    0   K          ;
                                                        3
                       0
                                  1
                                             2
                           4
                                      EJ  z     2 EJ  z     dx
           M    x   4y  2 K EJ   4  K EJ   M K 
                        0    3   z    0    4   z    0  1
                               2
                     Q        d y *    x
                          0  K      ;
                         2     dx 2

                                        107
   102   103   104   105   106   107   108   109   110   111   112