Page 103 - 4560
P. 103

To use the boundary condition (8.12) we find
                     2
                    d y         2   x
                          2C   e  cos x   sin    x ,        (8.17)
                              1
                    dx 2
                           3
                         d y         3   x
                                4C   e  cos x .                  (8.18)
                                  1
                          dx 3
                 Equating the right sides of formulas (8.18) and (8.12) we
          obtain
                                      P
                                       C   .
                                1         3
                                   8EJ 
                                       z
                 Substituting  C  in the equations (8.15) - (8.18) we obtain
                               1
          the  final  equations  for  the  deflection,  angles  of  rotation  of  the
          cross sections, bending moments and transverse forces
                                       P
                             y    x      ;                      (8.19)
                                             1
                                    8EJ  3
                                        z
                                       P
                              x         ;                     (8.20)
                                             4
                                    4EJ   2
                                        z
                                       P
                              M    x    ;                       (8.21)
                                z          2
                                       4
                                        P
                              Q    x     ,                     (8.22)
                               y           3
                                        2
          Where   x      i  4 , 1   - the functions of dimensionless argument
                   i
            x that are defined as follows:
                          e    x  cos x   sin x  ;
                        1                        
                          e    x cos x  sin x  ;
                         2                                         (8.23)
                          e    x  cos x  ;
                        3                        
                          e    x  sin x  .  
                         4                       



                                        103
   98   99   100   101   102   103   104   105   106   107   108