Page 103 - 4560
P. 103
To use the boundary condition (8.12) we find
2
d y 2 x
2C e cos x sin x , (8.17)
1
dx 2
3
d y 3 x
4C e cos x . (8.18)
1
dx 3
Equating the right sides of formulas (8.18) and (8.12) we
obtain
P
C .
1 3
8EJ
z
Substituting C in the equations (8.15) - (8.18) we obtain
1
the final equations for the deflection, angles of rotation of the
cross sections, bending moments and transverse forces
P
y x ; (8.19)
1
8EJ 3
z
P
x ; (8.20)
4
4EJ 2
z
P
M x ; (8.21)
z 2
4
P
Q x , (8.22)
y 3
2
Where x i 4 , 1 - the functions of dimensionless argument
i
x that are defined as follows:
e x cos x sin x ;
1
e x cos x sin x ;
2 (8.23)
e x cos x ;
3
e x sin x .
4
103